50 research outputs found

    Monitoring the Impact of Influenza by Age: Emergency Department Fever and Respiratory Complaint Surveillance in New York City

    Get PDF
    Don Olson and colleagues report that influenza-related morbidity in NYC from 2001 to 2006 was highly age- and strain-specific and conclude that surveillance using electronic data can provide timely and representative information about the epidemiology of circulating influenza viruses

    Evaluation of school absenteeism data for early outbreak detection, New York City

    Get PDF
    BACKGROUND: School absenteeism data may have utility as an early indicator of disease outbreaks, however their value should be critically examined. This paper describes an evaluation of the utility of school absenteeism data for early outbreak detection in New York City (NYC). METHODS: To assess citywide temporal trends in absenteeism, we downloaded three years (2001–02, 2002–03, 2003–04) of daily school attendance data from the NYC Department of Education (DOE) website. We applied the CuSum method to identify aberrations in the adjusted daily percent absent. A spatial scan statistic was used to assess geographic clustering in absenteeism for the 2001–02 academic year. RESULTS: Moderate increases in absenteeism were observed among children during peak influenza season. Spatial analysis detected 790 significant clusters of absenteeism among elementary school children (p < 0.01), two of which occurred during a previously reported outbreak. CONCLUSION: Monitoring school absenteeism may be moderately useful for detecting large citywide epidemics, however, school-level data were noisy and we were unable to demonstrate any practical value in using cluster analysis to detect localized outbreaks. Based on these results, we will not implement prospective monitoring of school absenteeism data, but are evaluating the utility of more specific school-based data for outbreak detection

    A Space–Time Permutation Scan Statistic for Disease Outbreak Detection

    Get PDF
    BACKGROUND: The ability to detect disease outbreaks early is important in order to minimize morbidity and mortality through timely implementation of disease prevention and control measures. Many national, state, and local health departments are launching disease surveillance systems with daily analyses of hospital emergency department visits, ambulance dispatch calls, or pharmacy sales for which population-at-risk information is unavailable or irrelevant. METHODS AND FINDINGS: We propose a prospective space–time permutation scan statistic for the early detection of disease outbreaks that uses only case numbers, with no need for population-at-risk data. It makes minimal assumptions about the time, geographical location, or size of the outbreak, and it adjusts for natural purely spatial and purely temporal variation. The new method was evaluated using daily analyses of hospital emergency department visits in New York City. Four of the five strongest signals were likely local precursors to citywide outbreaks due to rotavirus, norovirus, and influenza. The number of false signals was at most modest. CONCLUSION: If such results hold up over longer study times and in other locations, the space–time permutation scan statistic will be an important tool for local and national health departments that are setting up early disease detection surveillance systems

    Dead Bird Clusters as an Early Warning System for West Nile Virus Activity

    Get PDF
    An early warning system for West Nile virus (WNV) outbreaks could provide a basis for targeted public education and surveillance activities as well as more timely larval and adult mosquito control. We adapted the spatial scan statistic for prospective detection of infectious disease outbreaks, applied the results to data on dead birds reported from New York City in 2000, and reviewed its utility in providing an early warning of WNV activity in 2001. Prospective geographic cluster analysis of dead bird reports may provide early warning of increasing viral activity in birds and mosquitoes, allowing jurisdictions to triage limited mosquito-collection and laboratory resources and more effectively prevent human disease caused by the virus. This adaptation of the scan statistic could also be useful in other infectious disease surveillance systems, including that for bioterrorism

    The Outbreak of West Nile Virus Infection in the New York City Area in 1999

    Full text link
    Background In late August 1999, an unusual cluster of cases of meningoencephalitis associated with muscle weakness was reported to the New York City Department of Health. The initial epidemiologic and environmental investigations suggested an arboviral cause. Methods Active surveillance was implemented to identify patients hospitalized with viral encephalitis and meningitis. Cerebrospinal fluid, serum, and tissue specimens from patients with suspected cases underwent serologic and viral testing for evidence of arboviral infection. Results Outbreak surveillance identified 59 patients who were hospitalized with West Nile virus infection in the New York City area during August and September of 1999. The median age of these patients was 71 years (range, 5 to 90). The overall attack rate of clinical West Nile virus infection was at least 6.5 cases per million population, and it increased sharply with age. Most of the patients (63 percent) had clinical signs of encephalitis; seven patients died (12 percent). Muscle weakness was documented in 27 percent of the patients and flaccid paralysis in 10 percent; in all of the latter, nerve conduction studies indicated an axonal polyneuropathy. An age of 75 years or older was an independent risk factor for death (relative risk adjusted for the presence or absence of diabetes mellitus, 8.5; 95 percent confidence interval, 1.2 to 59.1), as was the presence of diabetes mellitus (ageadjusted relative risk, 5.1; 95 percent confidence interval, 1.5 to 17.3). Conclusions This outbreak of West Nile meningoencephalitis in the New York City metropolitan area represents the first time this virus has been detected in the Western Hemisphere. Given the subsequent rapid spread of the virus, physicians along the eastern seaboard of the United States should consider West Nile virus infection in the differential diagnosis of encephalitis and viral meningitis during the summer months, especially in older patients and in those with muscle weakness

    Longitudinal molecular microbial analysis of influenza-like illness in New York City, may 2009 through may 2010

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We performed a longitudinal study of viral etiology in samples collected in New York City during May 2009 to May 2010 from outpatients with fever or respiratory disease symptoms in the context of a pilot respiratory virus surveillance system.</p> <p>Methods</p> <p>Samples were assessed for the presence of 13 viruses, including influenza A virus, by MassTag PCR.</p> <p>Results</p> <p>At least one virus was detected in 52% of 940 samples analyzed, with 3% showing co-infections. The most frequently detected agents were rhinoviruses and influenza A, all representing the 2009 pandemic H1N1 strain. The incidence of influenza H1N1-positive samples was highest in late spring 2009, followed by a decline in summer and early fall, when rhinovirus infections became predominant before H1N1 reemerged in winter. Our study also identified a focal outbreak of enterovirus 68 in the early fall of 2009.</p> <p>Conclusion</p> <p>MassTag multiplex PCR affords opportunities to track the epidemiology of infectious diseases and may guide clinicians and public health practitioners in influenza-like illness and outbreak management. Nonetheless, a substantial proportion of influenza-like illness remains unexplained underscoring the need for additional platforms.</p
    corecore